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Abstract

A high-order discrete-layer theory and a finite element are presented for predicting the damping of laminated

composite sandwich beams. The new layerwise laminate theory involves quadratic and cubic terms for approximation

of the in-plane displacement in each discrete layer, while interlaminar shear stress continuity is imposed through the

thickness. Integrated damping mechanics are formulated and both laminate and structural stiffness, mass and damping

matrices are formed. A finite element method and a beam element are further developed for predicting the free vibration

response, including modal frequencies, modal loss factors and through-thickness mode shapes. Numerical results and

evaluations of the present model are shown. Modal frequencies and damping of sandwich composite beams are

measured and correlated with predicted values. Finally, parametric studies illustrate the effect of core thickness and face

lamination on modal damping and frequency values.
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1. Introduction

Passive damping is a critical parameter in improving the dynamic performance of flexible structures

requiring tight vibration control, fatigue endurance, aeroelastic stability and accurate positioning of devices

and sensors. Polymer matrix composite materials are known to exhibit higher damping than most common

metals and are preferred in lightweight structures, where passive damping may significantly improve dy-

namic and acoustic performance. Sandwich structures with laminated composite faces and foam cores are
considered in many structural applications due to their increased flexural stiffness to mass ratio. The

possibility to provide higher damping than composite structures because of the shearing of the viscoelastic

core is an additional advantage. However, sandwich structures are challenging to model and analyze, due to

the inhomogeneity in properties and anisotropy through the thickness, the high thickness and the shearing
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of the core. Thus, discrete-layer formulations are essential in order to sufficiently capture interlaminar shear

effects on both static and damped dynamic performance.

Substantial analytical and experimental work was reported on damping mechanisms of composite

laminates (e.g. Gibson and Plunkett, 1976; Ni and Adams, 1984; Saravanos and Chamis, 1990; Wren and
Kinra, 1992; Alam and Asnani, 1986). Saravanos (1994) reported a linear fully layerwise damping plate

theory for laminated composite plates together with semi-analytical solutions, as well as, a finite element

(1993) capable of predicting the damping of thick composite plates, and the damping of composite sand-

wich plates with interlaminar damping layers (Saravanos and Pereira, 1992); whereas, Taylor and Nayfeh

(1997) presented an analytical solution for the damped vibrational characteristics of thick composite plates.

Zapfe and Lesieutre (1999) developed a linear discrete-layer beam finite element applicable to composite

sandwich beams with integral damping layers. Di Sciuva and Icardi (2001) developed a high-order zig-zag

analytical solution to predict the static response of sandwich beams. Meunier and Shenoi (2001) developed
a single-layer higher order solution for composite sandwich plates and reported experimental results for the

foam core dynamic properties, whereas Nilsson and Nilsson (2002) presented a linear discrete-layer solu-

tion and measured eigenfrequencies of sandwich beams and plates. Birman and Byrd (2002) presented two

analytical methodologies for the evaluation of damping in sandwich structures. Lee and Kosmatka (2002)

developed a discrete-layer triangular element for predicting damping in composite plates, including higher

order terms in the displacement approximation through the thickness and presented experimental results

for composite plates with an interlaminar damping layer.

The present paper describes an integrated high-order layerwise formulation and a finite element for
effectively predicting the damped free-vibration response of thick composite and sandwich beams. Previous

linear layerwise formulations (Saravanos, 1993, 1994) provide the basis for developing a novel expandable

high-order discrete-layer formulation, in which quadratic and cubic fields are added in the kinematics of

each discrete layer, while maintaining displacement compatibility. Compatibility in interlaminar stress

between adjacent layers and on the free edges is further imposed, leading to a reduction of the generalized

laminate displacements. Based on this framework, the generalized laminate and structural governing

equations are derived, and stiffness, mass and damping matrices are formulated. An in-plane finite element

method and a 2-node damped beam finite element are further formulated for the damped free-vibration
analysis of sandwich beams and modal damping is predicted using the modal strain energy dissipation

method. The present finite element is used to predict modal frequencies, damping and through-thickness

displacement, strain and stress fields in composite and sandwich beams. Experimental modal analysis tests

conducted on sandwich beams with composite faces and a foam core are presented, moreover, measured

modal damping and frequencies are correlated with predicted values. Finally, the effect of face lamination

and face- to-core thickness ratio on the damping of sandwich beams is studied.
2. Theoretical formulation

The following paragraphs describe the integrated multi-scale formulation, starting from the basic

material equations and arriving to the prediction of the damped free-vibration response of a sandwich
beam.
2.1. Governing material equations

In general the laminate layers including both composite plies and foam core are assumed to exhibit

orthotropic viscoelastic behavior. Assuming harmonic loading, the off-axis complex stress component rc is
provided by:
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rci ¼ ð½Qcij � þ j½Qcim �½gcmj �ÞScj ð1Þ
where subscripts i; j;m ¼ 1; . . . ; 6 indicate stress and strain components in extended vector notation form;

subscript c indicates the structural coordinate system Oxyz; j is the imaginary unit; Sj, ri are the engineering
strain and stress; [Qc] is the off-axis storage stiffness matrix; [gc] is the off-axis loss factor matrix in the

structural system. The latter is related through a proper rotational transformation (Saravanos and Chamis,
1990) to the on-axis damping matrix [gl] containing the four independent damping loss factors of a

composite ply, describing the longitudinal damping gl1 (direction 11), transverse damping gl2 (direction 22),

in-plane shear damping gl6 ¼ gl5 (directions 12 and 13) and interlaminar shear damping gl4 (direction 23).

Reduced stiffness and damping matrices [Q�
ij] and [Q�

dij
] (i; j ¼ 1; 5) are used for the beam case, where rc1

and rc5 are the assumed non-zero stresses. The reduction method is described in Appendix A. In the

remaining paragraphs, reduced matrices are used and superscript * is implied.

2.2. Kinematic assumptions

A typical laminate is assumed to be subdivided into n discrete layers as shown schematically in Fig. 1a,

each discrete layer may contain either a single ply, a sublaminate, or a subply. A piecewise linear in-plane

displacement field is first assumed through the laminate thickness, which maintains continuity across the

discrete-layer boundaries, while allowing for different slopes in each discrete layer. Parabolic and cubic

variations in the displacement field are further assumed through the thickness of each discrete layer (Fig.

1b). In this manner, the displacement field in the kth discrete layer takes the form:
uðx; z; tÞ ¼ Ukðx; tÞWk
1ðfkÞ þ Ukþ1ðx; tÞWk

2ðfkÞ þ akðx; tÞ hk
2
ðf2k � 1Þ þ kkðx; tÞ hk

2
fkðf2k � 1Þ

wðx; z; tÞ ¼ woðx; tÞ
ð2Þ
Typical laminate configuration analyzed with n discrete layers. (a) Discrete layers; (b) assumed displacement field components

h the thickness of a discrete layer; the linear component corresponds to a linear layerwise model.
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where superscripts k ¼ 1; . . . ; n indicates the discrete layer, and o the mid-plane; The first two terms in the

right hand side describe the linear displacement field; Uk, Ukþ1 are the in-plane displacements at the

interfaces of each discrete layer (Saravanos and Heyliger, 1995) effectively describing the extension and

rotation of the layer, and Wk are linear interpolation functions through the layer thickness,
Wk
1 ¼ ð1� fkÞ=2

Wk
2 ¼ ð1þ fkÞ=2

ð3Þ
The last two terms in Eq. (2) describe quadratic and cubic variations; ak and kk are hyper-rotations in each
discrete layer introduced by the quadratic and cubic terms, respectively, and fk is the local thickness

coordinate of layer k, given by:
fk ¼
2

hk
z� z

k
1 þ zk2
hk

ð4Þ
where hk is the discrete layer thickness, z1 and z2 are the z-axis coordinates of the discrete layer’s bottom and

top surface, respectively.

2.3. Strain–displacement relations

In the context of kinematic assumptions (2) the axial and shear strains S1 and S5 in each discrete layer
are,
Sk1 ¼ Uk
;xW

k
1 þ Ukþ1

;x Wk
2 þ ak;x

hk
2
ðf2k � 1Þ þ kk;x

hk
2

fkðf2k � 1Þ

Sk5 ¼ wo
;x þ UkWk

1;fk

2

hk
þ Ukþ1Wk

2;fk

2

hk
þ 2akfk þ kkð3f2k � 1Þ

ð5Þ
In the axial strain equation, Uk
;x and U

kþ1
;x represent contributions of the mid-layer strain and curvature,

while the last two terms the contributions of hyper-curvatures ak;x and kk;x in the discrete layer. In the
interlaminar shear strain equation, the sum of the first three right hand side terms yields a constant shear

term, while the last two terms provide a linear and a quadratic term through the thickness of the kth layer.

The comma in the subscripts indicates differentiation.

2.4. Through-thickness compatibility

The displacement continuity at ply interfaces is self-imposed by the kinematic assumptions (2). Al-

though, the compatibility of shear stresses on the layer interfaces and free surfaces is weakly maintained

through the equations of equilibrium, shear stress compatibility conditions may be also explicitly imposed.
In the latter case, transverse shear stresses should be continuous between adjacent layers, and equal to

surface tractions sL5 ; s
U
5 at the free edges,
rk5ðfk ¼ 1Þ ¼ rkþ1
5 ðfkþ1 ¼ �1Þ

r1
5ðf1 ¼ �1Þ ¼ sL5

rn5ðfn ¼ 1Þ ¼ sU5

ð6Þ
where n is the upper discrete layer. Imposition of these nþ 1 linear equations results in additional

advantages: (1) it enables prediction of shear stresses at the ply interface; and (2) it yields a set of linear
equations, thus, relating nþ 1 of the laminate DOFs to the remaining ones, the former were selected to be

all ki, i ¼ 1; . . . ; n and the an. The compatibility equations, thus take the following form,
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an

ki

� �
¼ ½R�

w;x

Uj

ak

8<
:

9=
; ð7Þ
where i ¼ 1; . . . ; n, j ¼ 1; . . . ; nþ 1, k ¼ 1; . . . ; n� 1; ½R� is the reduction matrix, having dimensions

ðnþ 1Þ 	 ð2nþ 1Þ described in Appendix A. Inclusion of Eq. (7) into the governing laminate equations

leads to the elimination of nþ 1 laminate DOFs.
2.5. Laminate matrices

The dissipated WdL and stored WL strain energy per unit area in the laminate during a vibration cycle are

defined as follows:
WdL ¼ 1

2

Z h
2

�h
2

ST
i ½Qdcij

�Sj dz ð8Þ
WL ¼ 1

2

Z h
2

�h
2

ST
i ½Qcij

�Sj dz ð9Þ
where i; j ¼ 1; 5 and ½Qdc � ¼ ½Qc�½gc� . Combining Eqs. (2)–(9) and collecting the coefficients in the common

degrees of freedom between adjacent layers (see Appendix A) we arrive to the final forms of dissipated and

stored strain energy in the laminate:
WdL ¼ 1

2
fSLr1g½Gdr�fSLr1g þ

1

2
fSLr5g½Fdr�fSLr5g ð10Þ
WL ¼ 1

2
fSLr1g½Gr�fSLr1g þ

1

2
fSLr5g½Fr�fSLr5g ð11Þ
where ½Gr�, ½Fr�, and ½Gdr�, ½Fdr� are ð2nþ 1Þ 	 ð2nþ 1Þ generalized stiffness and damping laminate matrices
containing in-plane and interlaminar stiffness and damping terms, respectively; subscript r indicates the

stiffness and damping matrix reduction performed by imposing the stress compatibility equation (7); and

fSLr1g ¼ fw;xx ;U 1;x ; . . . ;Unþ1;x ; a1;x ; . . . ; an�1;x g and fSLr5g ¼ fw;x ;U 1; . . . ;Unþ1; a1; . . . ; an�1g are the re-

duced laminate strain vectors. The kinetic energy of the laminate takes the form:
KL ¼ 1

2
f _uLrgT½mLr�f _uLrg ð12Þ
where ½mLr� is the reduced laminate inertia matrix and fuLrg ¼ fw;U 1; . . . ;Unþ1; a1; . . . ; an�1g is the reduced

laminate displacement vector, as described in Appendix A.

It is noted, that for the simple case of a single discrete layer, the present theory effectively reduces to the

well known single-layer higher order theory with cubic terms in the in-plane displacement approximation

(Reddy, 1997) with compatibility equation (6) containing only the last two surface traction conditions. The

corresponding damping matrices for the single-layer case are described in Appendix A.
2.6. Equations of motion

The equations of motion of the undamped system are defined in variational form, using the Hamilton’s

principle, as:
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Z t2

t1



�
Z
V

dST
i ri dV þ

Z
V

d
1

2
q _u2j


 �
dV þ

Z
Cr

d�uj�sj dC

�
dt ¼ 0 ð13Þ
where i ¼ 1; 5 and j ¼ 1; 3. After substituting constitutive equations (1), (2) and (5) into the previous

equation, integration through the thickness yields the equations of motion in terms of generalized strains

and laminate matrices:
Z t2

t1



�

Z Lx

0

dWL dx�
Z Lx

0

dWdL dxþ
Z Lx

0

dKL dxþ
Z Lx

0

d�u�sdx
�
dt ¼ 0 ð14Þ
where dWL is the variation of laminate strain energy in Eq. (11), dWdL is the variation of the laminate

dissipated energy, and dKL is the variation of laminate kinetic energy. The conservative and dissipated

strain energy terms result from the first term of Eq. (13), and the latter strongly depend on the assumed

viscoelastic constitutive law. For the case of harmonic vibration with a composite constitutive equation (1),
the dissipated and stored strain energy take finally the forms provided by Eqs. (10) and (11), respectively.

2.7. Finite element formulation

Based on the previous equations of motion (14), a finite element based solution was developed. C1

continuous shape functions HðxÞ were implemented in the local approximation of the transverse dis-

placement wo, while C0 shape functions NðxÞ were used for the remaining DOFs. The compatibility

equations (6) or (7) imply that in order to maintain continuity in the eliminated hyper-rotations ki

(i ¼ 1; . . . ; n) and an, the slope of the transverse displacement wo
;x should also remain continuous along

element boundaries, hence the requirement for C1 continuity on wo. The use of C1 shape functions also

results in continuity in the constant shear strain component of Eq. (5). In this manner, the local approx-

imations of the generalized state variables in the element take the following type:
Ukðx; tÞ ¼
XL
i¼1

UkiðtÞNiðxÞ

amðx; tÞ ¼
XL
i¼1

amiðtÞNiðxÞ

woðx; tÞ ¼
XL
i¼1

woiðtÞHi
1ðxÞ



þ Le

2
woi

;x ðtÞHi
2ðxÞ

�
ð15Þ
where k ¼ 1; . . . ; nþ 1and m ¼ 1; . . . ; n� 1; Le denotes the element length. A 2-node (L ¼ 2) beam element

was further developed and encoded employing linear interpolation functions Ni and cubic Hermitian

polynomials Hi
1, H

i
2.

2.8. Beam damping

Substituting Eqs. (10)–(12) and (15) into the governing equations of motion (14), and assuming har-

monic motion, we arrive to the final form of the discrete system describing the free-vibration response of the

beam:
�x2½M�fVg þ j½C�fVg þ ½K�fVg ¼ 0 ð16Þ
where fVg are the amplitude vectors; ½M�, ½C� and ½K� are the inertia, damping and stiffness matrices of the

beam, respectively, obtained from Eq. (14) after substituting Eqs. (10)–(12) and (15) and collecting the
common terms. The resultant expression for the element damping matrix, is described in Appendix A. In
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the case of frequency independent damping, Eq. (16) can be solved directly, to yield the complex eigen-

values of the system, from which modal frequencies and damping can be extracted. Moreover, in the case of

relatively low damping, the modal strain energy dissipation approach can be used, which assumes that the

undamped mode shapes do not differ substantially from those of the damped system. The modal loss factor
associated with the mth order mode gm is the ratio of dissipated to stored strain modal energy of the mth
mode:
gm ¼
R Lx
0

DWLm dxR Lx
0
WLm dx

ð17Þ
The numerical solution of Eq. (16) for ½C ¼ 0� provides the undamped natural frequencies and the modal

displacement vectors of the beam. The modal loss factor of the beam is then calculated from the ratio of the

respective dissipated and maximum stored energies:
gm ¼ VT
m½C�Vm

VT
m½K�Vm

ð18Þ
Eqs. (16)–(18) are consistent with the assumed constitutive material behavior described by Eq. (1). Besides

its previous stated limitations, the modal strain energy approach provides simple damping measures of the

structure, and for this reason it was adopted in this work. Other formulations implementing time-domain
damping models (e.g. Bagley and Torvik, 1986; Zapfe and Lesieutre, 1999) can be alternatively considered,

which do not suffer from the previous limitations and may capture frequency dependence, however, such

approaches exceed the scope of present work and are left as a topic of future research.
3. Experiments

Sandwich beams were fabricated with a foam (f) core (DIAB Klegecell R grade foam) and Glass/
Polyester (Gl/Pl) composite faces of [0/f/0] and [90/f/90] laminations, and their modal characteristics were

subsequently measured. The beam specimens were cut from a [0/f/0] plate, which was fabricated by hand

lay-up and their dimensions were Lx ¼ 860 mm, b ¼ 50 mm, h ¼ 35 mm, with b denoting specimen’s width.

The thicknesses of each of the faces and the core were hf ¼ 2:5 mm and hc ¼ 30 mm, respectively. The

elastic and damping properties of the Gl/Pl composite (Chrisochoidis, 2001) and foam were also measured.

The dimensions of the tested foam specimen were Lx ¼ 1140 mm, b ¼ 50 mm, h ¼ 20 mm.

3.1. Experimental procedure

The experimental setup is shown schematically in Fig. 2. The specimens were suspended by wires to

reproduce near free–free boundary conditions in order to eliminate friction damping in the supports. The

excitation was applied using either a medium electromagnetic shaker or an impact hammer, both having a
load cell attached. The beams were excited at position 1 (mid-length) or 2 (free-end) and a miniature (1g)

accelerometer was used to measure the acceleration at positions 1 or 2 in order to acquire both symmetric

and antisymmetric modes. In the case of the shaker, a swept sine force was applied to excite the specimen.

The signals of the load cell and the accelerometer were first amplified, then digitized through a high speed

data acquisition board and finally processed using FFT software to obtain the power spectra and frequency

response function (FRF) of the beam. The measured FRFs were further correlated with a known para-

metric model of complex exponential terms, each term approximating an individual mode with known

modal parameters (frequency and damping), such that the least squares error between the model and
measured FRFs was minimized. Through this correlation, the modal frequencies and damping coefficients



Fig. 2. Experimental configuration for measuring modal frequencies and damping of the sandwich beams.
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of the tested specimens were extracted. A similar procedure was used to extract the elastic and damping

coefficients of the Gl/Pl composite and of the foam, shown in Table 1.
4. Results and discussion

This section presents static and modal analysis results obtained using the developed finite element and

comparisons with predictions of other single-layer and layerwise theories. The latter include a linear dis-

crete-layer theory and finite element which has been extensively correlated with exact plate solutions

(Saravanos and Heyliger, 1999). Modal damping and frequencies are predicted for thick composite beams,

composite beams with ISD110 interlaminar damping layers and composite sandwich beams with foam core.

The mechanical properties of all materials are shown in Table 1.
4.1. Static response of sandwich beam

The static response of a simply-supported sandwich beam analyzed by Di Sciuva and Icardi (2001) using

a layerwise analytical solution was modeled. The applied transverse sinusoidal pressure had the form:
pðxÞ ¼ p0 sin
px
L

� �
The beam had a thickness aspect ratio L=h ¼ 4 and a core to face thickness ratio hc=hf ¼ 4. It was modeled

using 11 finite elements, and 12 discrete layers through the thickness, each representing an individual ply or

the core. Fig. 3a and b illustrate the predicted distribution of in-plane axial stress r1 and interlaminar shear

stress r5 through the thickness of the beam in normalized form, respectively. Predicted stress is normalized

as
�rxz ¼
rxzð0; zÞ
p0

; �rxx ¼
rxxðL=2; zÞ

p0
Very good correlation is observed between the present layerwise element and the analytical solution (Di
Sciuva and Icardi, 2001) for both axial and interlaminar shear stress, indicating that the current element can

accurately predict stress in thick sandwich beam structures, where stress distribution through the thickness

can be complicated.
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Fig. 3. Predicted static response of a simply-supported sandwich beam under sinusoidal loading. (a) interlaminar shear stress; (b) axial

stress through the thickness.

Table 1

Elastic and damping properties of materials considered

Gl/Pl composite 3 M 110 polymer Klegecell R foam

Elastic properties

E11 (GPa) 25.8 113.0e)3 35.0e)3
E22 (GPa) 8.7 113.0e)3 35.0e)3
E33 (GPa) 8.7 113.0e)3 35.0e)3
G23 (GPa) 2.4 38.0e)3 12.3e)3
G13 (GPa) 3.5 38.0e)3 12.3e)3
G12 (GPa) 3.5 38.0e)3 12.3e)3
m12 0.34 0.49 0.40

m13 0.34 0.49 0.40

m23 0.47 0.49 0.40

Damping properties

gl1 (%) 0.65 1.60 2.40

gl2 (%) 2.34 1.60 2.40

gl4 (%) 2.89 16.00 3.00

gl6 (%) 2.89 16.00 3.00

Mass density q (kg/m3)

1672 1000 45
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4.2. [0/90/0] Beam

The static response of a [0/90/0] Glass/Polyester (Gl/Pl) moderately thick (L=h ¼ 10) composite beam

subject to 3-point bending was predicted. The beam was 150 mm long and was modeled using six elements
and three discrete layers through the thickness. Each layer represented a laminate ply and had a thickness of

5 mm. Each node had 8 structural degrees of freedom, namely the transverse deflection and its slope, four

axial displacements, one for each hidden node through thickness, and the a1, a2 from the discrete layers 1

and 2, respectively. A transverse line load of 39.37 N/mm was considered at the center of the beam. The

predicted transverse deflection and the interlaminar shear strain and stress fields through the thickness at

1/4 of the length are presented in Fig. 4a–c and compared with finite element results of a linear discrete-

layer theory (Saravanos and Heyliger, 1995), which uses n ¼ 15 discrete layers and subsequently 16

structural degrees of freedom per node. Excellent correlation between the two models is observed, which
shows that the present high-order discrete-layer damping theory can accurately capture interlaminar shear

effects and calculate strains and stresses at the ply interfaces. As expected, there is continuity in predicted

stress between adjacent layers (Fig. 4c) while both shear strain and stress vanish at the stress-free edges. The

contribution of linear and high-order terms on the calculation of total interlaminar strain is also illustrated
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Fig. 4. Predicted static response of simply-supported [0/90/0] Gl/Pl beam under 3-point bending. (a) Transverse deflection; (b) dis-

tribution of interlaminar shear strain through the thickness, including linear and high-order terms; (c) distribution of interlaminar

shear stress through the thickness.
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in Fig. 4b. The excellent results obtained and the minimal number of laminate degrees of freedom used by

the present laminate model vs. the linear discrete-layer theory, indicate the improved computational effi-

ciency of the former vs. the latter.

Natural frequencies and modal loss factors of the beam in unsupported conditions were predicted and
compared with results of a single-layer first-order shear damping shell theory (FSDT) (Plagianakos and

Saravanos, 2003), which has been previously validated with exact plate solutions (Saravanos and Heyliger,

1999). A 10 · 1 shell finite element model was used. Fig. 5a and b demonstrate the effect of thickness aspect

ratio on the normalized natural frequency (xnorm ¼ xbL=h) and modal loss factor of the first two bending

modes, respectively. Very good correlation is observed for thin sections (high thickness aspect ratios),

whereas, for thick beams the higher order discrete-layer theory seems to provide higher predictions of

damping and lower predictions of modal frequencies than the first-order shear theory, apparently, due to

the improved representation of interlaminar shear effects.
4.3. [h2/�h2/i/h2/�h2]s clamped-free beam

The effect of ply angle on modal damping of a [h2/�h2/i/h2/�h2] Glass/Polyester moderately thick
(L=h ¼ 50) clamped-free beam was studied; i indicates interlaminar damping layer (3 M 110 viscoelastic

damping polymer) with mechanical properties shown in Table 1. The beam had a length of 225 mm and was

modeled using five discrete layers through the thickness, one layer for each of the three restraining

sublaminates and one layer for each of the two damping layers. The thickness of each damping layer was
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Fig. 5. Effect of thickness aspect ratio on the damped response of a free [0/90/0] Gl/Pl beam. (a) Normalized bending frequencies;

(b) bending modal loss factors.
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0.25 mm. The enhancement of modal damping by adding viscoelastic layers for the three first bending

modes of the beam with respect to the ply angle is shown in Fig. 6. For the higher bending modes, where

interlaminar shear effects are more dominant, modal damping almost quintuplicates in the h ¼ 0 lamina-

tions due to increased shear in the viscoelastic layers imposed by stiffer restraining composite faces. Fur-
thermore, as the mode number increases a more uniform variation of damping with respect to the fiber

orientation angle is observed, providing great advantage and flexibility towards the design of laminated

composite beams with interply damping layers exhibiting high stiffness and damping.
4.4. Free–free sandwich beams

Modal frequencies and damping of the tested [0/f/0] and [90/f/90] beams were predicted and correlated

with measured values. The longitudinal modal loss factor gl1 of the foam was also measured and found to
be frequency independent for frequencies over 100 Hz (Fig. 7). The shear modal loss factor of the foam was

measured from a single torsional mode, near 150 Hz. Thus, the foam damping values shown in Table 1,

correspond to the measured constant damping values over 100 Hz. The sandwich beams were modeled

using 20 elements in the axial direction and five discrete layers through the thickness, arranged as follows:
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one 2.3 mm thick layer for each face, one 30 mm thick layer for the core and two 0.23 mm thick layers for

the region between face and core, being reach in matrix due to fabrication. In Fig. 8a and b predicted modal

damping values for the eight first bending modes of the beams are presented. Measured damping values

obtained using shaker and hammer excitation are also shown. Very good correlation is observed in the
[0/f/0] case; whereas, in the [90/f/90] case some deviation exists, especially near low frequencies, possibly due

to imperfections in the fabrication of the Gl/Pl composite faces and some frequency effects. However, in

both cases the present method has captured the modal damping trend to increase at higher modes, as

interlaminar shear effects become more dominant, reaching eventually a saturation plateau. This point will

be further discussed in the following case.
4.5. Clamped-free sandwich beam

The through-thickness modal response of a similar to the previous case [0/f/0] sandwich beam with Gl/Pl

composite faces and foam core was studied. The beam was 500 mm long, had a thickness aspect ratio L=h of
14.3 and was modeled using 20 elements and n ¼ 3 discrete layers through the thickness. The core to face

thickness aspect ratio hco=hfo was 6.25. Fig. 9a and b show predicted distributions of modal displacement
and interlaminar strain, respectively, through the thickness near the clamped end for the three first bending
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beams, (a) [0/f/0] and (b) [90/f/90].
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modes. Results were compared to those obtained using a linear layerwise beam FE with n ¼ 34 discrete

layers (Saravanos and Heyliger, 1995) with very good agreement. The effect of core to face thickness aspect

ratio on damping of the three first bending modes is presented in Fig. 10a. There is a baseline composite

damping, upon which damping is added as the core gets thicker due to shear effects, which is clearly shown

in Fig. 10b, where the fundamental modal interlaminar shear stress distribution through the thickness near
the clamped end is presented. Higher modes exhibit higher damping due to the presence of increased

interlaminar shear. There is also a thickness ratio threshold for each individual mode, beyond which

damping seems to be rather insensible to core thickness. This saturation may probably indicate that

interlaminar shear effects become less dominant than interlaminar normal effects (r3 action), which the

present theory does not capture.

In closing, the presented numerical predictions and their comparison with various analytical, numerical

and experimental results has successfully quantified the accuracy range of the present method. The robust

analytical capabilities of the present laminate theory were illustrated through the analysis of various
laminations, thick composite beams, thick sandwich beams with foam cores and composite beams with

compliant damping layers. In all previous cases, the present approach seemingly provided very good

displacement and stress predictions through the laminate, using a minimal number of discrete layers

and degrees of freedom.
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5. Summary

Unified mechanics and a finite element for predicting modal damping and natural frequencies of

thick composite and sandwich beams were presented. A discrete-layer higher order theory satisfying

compatibility in interlaminar shear stress was developed and modal damping was calculated by the

modal strain energy dissipation method. Various validations illustrated the accuracy of the developed

formulation.

The strong effect of ply orientation on the modal damping of a composite beam with interply

viscoelastic damping layers was investigated and higher bending modes were found to exhibit
increased damping compared to the fundamental, which also varied more uniformly with ply angle.

The improved damping behavior of foam sandwich beams was quantified both analytically and

experimentally. The strong effect of core to face thickness aspect ratio on the modal damping of a

sandwich beam was also studied, and it was observed that as the core thickness increases, the modal

damping first will also increase until a saturation plateau is reached. Overall, the results have dem-

onstrated the damping potential of composite sandwich beam structures, as well as, the capability of

developed layerwise damping theory to accurately analyze their global and local damped dynamic

response.



6868 T.S. Plagianakos, D.A. Saravanos / International Journal of Solids and Structures 41 (2004) 6853–6871
Acknowledgements

Part of this work was supported by ENK6-CT2000-00320 ENERGIE program. The authors gratefully

acknowledge this support, as well as, the support of Mr. Theodore Kossivas of Geoviologiki SA, who
provided the sandwich specimens. The authors want also to thank Research Assistant Nikos Chryso-

choidis, for his valuable help with the experimental work.
Appendix A

A.1. Equivalent ply properties

Stiffness. The equivalent reduced ply stiffness matrix ½Q�
c � is calculated from the full compliance matrix

½sc� by maintaining the elements corresponding to the non-zero stress components (r1; r5) as follows:
½Q�
c � ¼ ½s�c �

�1 ¼ sc11 0

0 sc55

� ��1

¼ Q�
c11

0

0 Q�
c55

� �
ðA:1Þ
Damping. The dissipated energy per unit volume per cycle within a ply is given by the following form:
Wc ¼
1

2
ST
c ½gc�½Qc�Sc ¼

1

2
rT
c ½sc�½gc�rc ðA:2Þ
where ½gc� is the off-axis ply damping matrix. By maintaining only the elements of ½sc�½gc� corresponding to

r1; r5 non-zero stress components, the equivalent off-axis ply damping matrix is obtained as follows:
½g�
c � ¼ ½Q�

c �ð½sc�½gc�Þ ¼
g�
c11

0

0 g�
c55

� �
ðA:3Þ
The equivalent loss-stiffness matrix is:
½Q�
dc
� ¼ ½Q�

c �½g�
c � ðA:4Þ
A.2. Discrete-layer matrices, ith layer
In-plane stiffness matrix; dimension ð4 	 4Þ

Sil1

n oT

½Gi
l� Sil1

n o
¼

Xnip
m¼1

Z fimþ1

fim

Si1
� �T

Qm11 Si1
� � hi

2
dfi ðA:5Þ

Interlaminar shear stiffness matrix ð5 	 5Þ

Sil5

n oT

½Fil� Sil5

n o
¼

Xnip
m¼1

Z fimþ1

fim

Si5
� �T

Qm55 Si5
� � hi

2
dfi ðA:6Þ

In-plane damping matrix ð4 	 4Þ

Sil1

n oT

½Gi
d
l
� Sil1

n o
¼

Xnip
m¼1

Z fimþ1

fim

Si1
� �T

Qm11g
m
11 Si1
� � hi

2
dfi ðA:7Þ
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Interlaminar shear damping matrix ð5 	 5Þ

Sil5

n oT

½Fid
l
� Sil5

n o
¼

Xnip
m¼1

Z fimþ1

fim

Si5
� �T

Qm55g
m
55 Si5
� � hi

2
dfi ðA:8Þ

Generalized density matrix ð5 	 5Þ

_uil

n oT

½mi
l� _uil

n o
¼

Xnip
m¼1

Z fimþ1

fim

_ui
n oT

qim _ui
n o hi

2
dfi ðA:9Þ
where nip is the total number of plies in the ith layer and m ¼ 1; . . . ; nip; fS
i
l1
g ¼ fUi

;x;U
iþ1
;x ; ai;x; k

i
;xg and

fSil5g ¼ fw;x;Ui;Uiþ1; ai; kig are the generalized strain vectors of the ith layer, whereas fSi1g , fSi5g are the

strains in the ith layer described in Eq. (5); fuilg ¼ fwo;Ui;Uiþ1; ai; kig is the generalized displacement

vector of the ith layer, whereas fuig is the displacement vector of the ith layer described in Eq. (2), including

both w and u.
A.3. Laminate matrices encompassing all previous submatrices through-the-thickness

In-plane stiffness, damping matrices ½G�, ½Gd�, dimensions ð3nþ 1Þ 	 ð3nþ 1Þ; interlaminar shear stiff-
ness, damping matrices ½F�, ½Fd�, dimensions ð3nþ 2Þ 	 ð3nþ 2Þ where n is the total number of layers of the

laminate, built as follows:
fSL1
gT½G�fSL1

g ¼
Xn
i¼1

fSil1g
T½Gi

l�fS
i
l1
g ðA:10Þ

fSL5
gT½F�fSL5

g ¼
Xn
i¼1

fSil5g
T½Fil�fS

i
l5
g ðA:11Þ

fSL1
gT½Gd�fSL1

g ¼
Xn
i¼1

fSil1g
T½Gi

dl
�fSil1g ðA:12Þ

fSL5
gT½Fd�fSL5

g ¼
Xn
i¼1

fSil5g
T½Fidl �fS

i
l5
g ðA:13Þ
fSL1
g ¼ fU 1

;x; . . . ;U
nþ1
;x ; a1

;x; . . . ; a
n
;x; k

1
;x; . . . ; k

n
;xg and fSL5

g ¼ fw;x;U 1; . . . ;Unþ1; a1; . . . ; an; k1; . . . ; kng are the

generalized laminate strain vectors.
A.4. Compatibility system (built from Eq. (6))
½P�

w;x

Uj

ai

ki

8>><
>>:

9>>=
>>;

¼ 0 ðA:14Þ
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where i ¼ 1; . . . ; n, j ¼ 1; . . . ; nþ 1; P is the compatibility matrix, having dimensions ðnþ 1Þ 	 ð2nþ 1Þ.
Eq. (A.14), upon partitioning and rearrangement of the ½P� matrix, provides Eq. (7).
A.5. Beam element damping matrix

Combining Eq. (15) with Eq. (10) and taking into account the reduced generalized laminate in-plane and

interlaminar strains, the beam element damping matrix is derived,
½Cije � ¼
Z
Le

½bi�T½Gdr�½bj�
�

þ ½bis�
T½Fdr�½bjs�

�
dx ðA:15Þ
where i, j indicate the nodes of the finite element and ½b� and ½bs� are the shape function matrices corre-

sponding, respectively, to the reduced in-plane and interlaminar shear strains. The element stiffness and
mass matrices are obtained in a similar manner. The element matrices are then used to synthesize the

structural stiffness, damping and mass matrices, ½K�, ½C� and ½M�, respectively, of Eq. (16).
A.6. Single-layer case

In the case of a single-layer through thickness, the theoretical framework developed reduces to the high-

order shear deformation theory (Reddy, 1997) in the case of a beam. The in-plane displacement through-

thickness approximation in Eq. (2) becomes,
uðx; z; tÞ ¼ U 1ðx; tÞW1ðfÞ þ U 2ðx; tÞW2ðfÞ þ aðx; tÞ h
2
ðf2 � 1Þ þ kðx; tÞ h

2
fðf2 � 1Þ ðA:16Þ
with a ¼ 0 and k ¼ 1
3

�
� w;x þ U1�U2

h

�
, as mandated from the two last compatibility equation (6) assuming

traction-free outer surfaces. In the context of Eq. (10) the reduced laminate in-plane and interlaminar shear

damping matrices ½Gdr� and ½Fdr�, respectively, are 3 · 3 matrices and fSLr1g ¼ fw;xx ;U 1;x ;U 2;x g and

fSLr5g ¼ fw;x ;U 1;U 2g are the reduced laminate strain vectors.
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