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Abstract

A high-order discrete-layer theory and a finite element are presented for predicting the damping of laminated
composite sandwich beams. The new layerwise laminate theory involves quadratic and cubic terms for approximation
of the in-plane displacement in each discrete layer, while interlaminar shear stress continuity is imposed through the
thickness. Integrated damping mechanics are formulated and both laminate and structural stiffness, mass and damping
matrices are formed. A finite element method and a beam element are further developed for predicting the free vibration
response, including modal frequencies, modal loss factors and through-thickness mode shapes. Numerical results and
evaluations of the present model are shown. Modal frequencies and damping of sandwich composite beams are
measured and correlated with predicted values. Finally, parametric studies illustrate the effect of core thickness and face
lamination on modal damping and frequency values.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Passive damping is a critical parameter in improving the dynamic performance of flexible structures
requiring tight vibration control, fatigue endurance, aeroelastic stability and accurate positioning of devices
and sensors. Polymer matrix composite materials are known to exhibit higher damping than most common
metals and are preferred in lightweight structures, where passive damping may significantly improve dy-
namic and acoustic performance. Sandwich structures with laminated composite faces and foam cores are
considered in many structural applications due to their increased flexural stiffness to mass ratio. The
possibility to provide higher damping than composite structures because of the shearing of the viscoelastic
core is an additional advantage. However, sandwich structures are challenging to model and analyze, due to
the inhomogeneity in properties and anisotropy through the thickness, the high thickness and the shearing
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of the core. Thus, discrete-layer formulations are essential in order to sufficiently capture interlaminar shear
effects on both static and damped dynamic performance.

Substantial analytical and experimental work was reported on damping mechanisms of composite
laminates (e.g. Gibson and Plunkett, 1976; Ni and Adams, 1984; Saravanos and Chamis, 1990; Wren and
Kinra, 1992; Alam and Asnani, 1986). Saravanos (1994) reported a linear fully layerwise damping plate
theory for laminated composite plates together with semi-analytical solutions, as well as, a finite element
(1993) capable of predicting the damping of thick composite plates, and the damping of composite sand-
wich plates with interlaminar damping layers (Saravanos and Pereira, 1992); whereas, Taylor and Nayfeh
(1997) presented an analytical solution for the damped vibrational characteristics of thick composite plates.
Zapfe and Lesieutre (1999) developed a linear discrete-layer beam finite element applicable to composite
sandwich beams with integral damping layers. Di Sciuva and Icardi (2001) developed a high-order zig-zag
analytical solution to predict the static response of sandwich beams. Meunier and Shenoi (2001) developed
a single-layer higher order solution for composite sandwich plates and reported experimental results for the
foam core dynamic properties, whereas Nilsson and Nilsson (2002) presented a linear discrete-layer solu-
tion and measured eigenfrequencies of sandwich beams and plates. Birman and Byrd (2002) presented two
analytical methodologies for the evaluation of damping in sandwich structures. Lee and Kosmatka (2002)
developed a discrete-layer triangular element for predicting damping in composite plates, including higher
order terms in the displacement approximation through the thickness and presented experimental results
for composite plates with an interlaminar damping layer.

The present paper describes an integrated high-order layerwise formulation and a finite element for
effectively predicting the damped free-vibration response of thick composite and sandwich beams. Previous
linear layerwise formulations (Saravanos, 1993, 1994) provide the basis for developing a novel expandable
high-order discrete-layer formulation, in which quadratic and cubic fields are added in the kinematics of
each discrete layer, while maintaining displacement compatibility. Compatibility in interlaminar stress
between adjacent layers and on the free edges is further imposed, leading to a reduction of the generalized
laminate displacements. Based on this framework, the generalized laminate and structural governing
equations are derived, and stiffness, mass and damping matrices are formulated. An in-plane finite element
method and a 2-node damped beam finite element are further formulated for the damped free-vibration
analysis of sandwich beams and modal damping is predicted using the modal strain energy dissipation
method. The present finite element is used to predict modal frequencies, damping and through-thickness
displacement, strain and stress fields in composite and sandwich beams. Experimental modal analysis tests
conducted on sandwich beams with composite faces and a foam core are presented, moreover, measured
modal damping and frequencies are correlated with predicted values. Finally, the effect of face lamination
and face- to-core thickness ratio on the damping of sandwich beams is studied.

2. Theoretical formulation

The following paragraphs describe the integrated multi-scale formulation, starting from the basic
material equations and arriving to the prediction of the damped free-vibration response of a sandwich
beam.

2.1. Governing material equations

In general the laminate layers including both composite plies and foam core are assumed to exhibit
orthotropic viscoelastic behavior. Assuming harmonic loading, the off-axis complex stress component 6, is
provided by:
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o, = ([Q.] +ilQ., ], ]S, W

where subscripts i, j,m = 1,...,6 indicate stress and strain components in extended vector notation form,;
subscript c indicates the structural coordinate system Oxyz; j is the imaginary unit; S;, ¢; are the engineering
strain and stress; [Q,] is the off-axis storage stiffness matrix; [n.] is the off-axis loss factor matrix in the
structural system. The latter is related through a proper rotational transformation (Saravanos and Chamis,
1990) to the on-axis damping matrix [n,] containing the four independent damping loss factors of a
composite ply, describing the longitudinal damping #;, (direction 11), transverse damping 7, (direction 22),
in-plane shear damping #,; = 15 (directions 12 and 13) and interlaminar shear damping n,, (direction 23).
Reduced stiffness and damping matrices [Q;‘j] and [QZ,-,- ] (i,j=1,5) are used for the beam case, where o,
and o, are the assumed non-zero stresses. The reduction method is described in Appendix A. In the
remaining paragraphs, reduced matrices are used and superscript * is implied.

2.2. Kinematic assumptions

A typical laminate is assumed to be subdivided into » discrete layers as shown schematically in Fig. la,
each discrete layer may contain either a single ply, a sublaminate, or a subply. A piecewise linear in-plane
displacement field is first assumed through the laminate thickness, which maintains continuity across the
discrete-layer boundaries, while allowing for different slopes in each discrete layer. Parabolic and cubic
variations in the displacement field are further assumed through the thickness of each discrete layer (Fig.
1b). In this manner, the displacement field in the kth discrete layer takes the form:

u(x,2,1) = UM 0 PH(G) + UM ) W00 + 246, 0) (G = 1) + 20 28— 1) .

w(x,z,t) = w°(x, 1)

Z L&T k I

(@ !

Layerk

(b) linear field quadratic field cubic field

Fig. 1. Typical laminate configuration analyzed with n discrete layers. (a) Discrete layers; (b) assumed displacement field components
through the thickness of a discrete layer; the linear component corresponds to a linear layerwise model.
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where superscripts £k = 1,...,n indicates the discrete layer, and o the mid-plane; The first two terms in the
right hand side describe the linear displacement field; U*, U**! are the in-plane displacements at the
interfaces of each discrete layer (Saravanos and Heyliger, 1995) effectively describing the extension and
rotation of the layer, and ¥* are linear interpolation functions through the layer thickness,

lP,f = (1 - Ck)/z

vh=(1+0)/2 (3)

The last two terms in Eq. (2) describe quadratic and cubic variations; o* and /* are hyper-rotations in each
discrete layer introduced by the quadratic and cubic terms, respectively, and {, is the local thickness
coordinate of layer &, given by:
2 A4+

CERTTTh

(4)

where £, is the discrete layer thickness, z; and z, are the z-axis coordinates of the discrete layer’s bottom and
top surface, respectively.

2.3. Strain—displacement relations

In the context of kinematic assumptions (2) the axial and shear strains S| and Ss in each discrete layer
are,

h
SE= USWh 4 US4 (ck—n ESGG -1
) , (5)
Sk=w® 4 UFPE 24 yFtiph —+2oc"Ck +23G - 1)
X Lk hk S hy,

In the axial strain equation, U" and U™ represent contrlbutlons of the mid-layer strain and curvature,
while the last two terms the contrlbutlons of hyper-curvatures of,, and 2*,, in the discrete layer. In the
interlaminar shear strain equation, the sum of the first three right hand side terms yields a constant shear
term, while the last two terms provide a linear and a quadratic term through the thickness of the kth layer.
The comma in the subscripts indicates differentiation.

2.4. Through-thickness compatibility

The displacement continuity at ply interfaces is self-imposed by the kinematic assumptions (2). Al-
though, the compatibility of shear stresses on the layer interfaces and free surfaces is weakly maintained
through the equations of equilibrium, shear stress compatibility conditions may be also explicitly imposed.
In the latter case, transverse shear stresses should be continuous between adjacent layers, and equal to
surface tractions t%, 7Y at the free edges,

Ulg(Ck =1)= ‘75 NG =—1)
Gé(Cl =-1)=15 (6)
O";(Cn =1)= Téj
where n is the upper discrete layer. Imposition of these n -+ 1 linear equations results in additional
advantages: (1) it enables prediction of shear stresses at the ply interface; and (2) it yields a set of linear

equations, thus, relating n + 1 of the laminate DOF's to the remaining ones, the former were selected to be
all /', i=1,...,n and the a". The compatibility equations, thus take the following form,
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where i=1,...,n, j=1,...,n+1, k=1,...,n—1; [R] is the reduction matrix, having dimensions

(n+1) x (2n+ 1) described in Appendix A. Inclusion of Eq. (7) into the governing laminate equations
leads to the elimination of n + 1 laminate DOFs.

2.5. Laminate matrices

The dissipated Wy and stored W strain energy per unit area in the laminate during a vibration cycle are
defined as follows:

L g
War =35 S Qq,,1S;dz ®)
2

1 /3

= [ STQ,Jsd: ©)
_151 Y

where i,/ = 1,5 and [Qg | = [Q.][n.] . Combining Eqs. (2)~(9) and collecting the coefficients in the common

degrees of freedom between adjacent layers (see Appendix A) we arrive to the final forms of dissipated and

stored strain energy in the laminate:

ot = & {81 }[Gurl (St} + 5 (S} Furl (S ) (10)

i = (801G (S0} + & (S F (S0 ) (“)

where [G,], [F,], and [Gq], [Fa:] are (2n + 1) x (2n + 1) generalized stiffness and damping laminate matrices
containing in-plane and interlaminar stiffness and damping terms, respectively; subscript r indicates the
stiffness and damping matrix reduction performed by imposing the stress compatibility equation (7); and
{Sir} = W, Ul iy, U oo o7 ) and Sy} = {wy,, UYL, U ol L o7} are the re-
duced laminate strain vectors. The kinetic energy of the laminate takes the form:

.. ot )
Ky = E{qu} (my]{u, } (12)

where [my,] is the reduced laminate inertia matrix and {u, } = {w, U',... U o' ... o""'} is the reduced
laminate displacement vector, as described in Appendix A.

It is noted, that for the simple case of a single discrete layer, the present theory effectively reduces to the
well known single-layer higher order theory with cubic terms in the in-plane displacement approximation
(Reddy, 1997) with compatibility equation (6) containing only the last two surface traction conditions. The
corresponding damping matrices for the single-layer case are described in Appendix A.

2.6. Equations of motion

The equations of motion of the undamped system are defined in variational form, using the Hamilton’s
principle, as:
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%) 1
/ <—/5s}cidV+/5(§paj.> dV+/ 5a,cjdr> dr=0 (13)
1 |4 v Iy

where i = 1,5 and j = 1,3. After substituting constitutive equations (1), (2) and (5) into the previous
equation, integration through the thickness yields the equations of motion in terms of generalized strains
and laminate matrices:

f Ly L. L. L.
/ (—/ 5Wde—/ 5Wdex+/ 5Kde+/ 5ufdx>dt=0 (14)
f 0 0 0 0

where 0/ is the variation of laminate strain energy in Eq. (11), W, is the variation of the laminate
dissipated energy, and 0K} is the variation of laminate kinetic energy. The conservative and dissipated
strain energy terms result from the first term of Eq. (13), and the latter strongly depend on the assumed
viscoelastic constitutive law. For the case of harmonic vibration with a composite constitutive equation (1),
the dissipated and stored strain energy take finally the forms provided by Egs. (10) and (11), respectively.

2.7. Finite element formulation

Based on the previous equations of motion (14), a finite element based solution was developed. C,
continuous shape functions H(x) were implemented in the local approximation of the transverse dis-
placement w°, while C, shape functions N(x) were used for the remaining DOFs. The compatibility
equations (6) or (7) imply that in order to maintain continuity in the eliminated hyper-rotations /'
(i=1,...,n) and 4", the slope of the transverse displacement w°, should also remain continuous along
element boundaries, hence the requirement for C; continuity on w°. The use of C; shape functions also
results in continuity in the constant shear strain component of Eq. (5). In this manner, the local approx-
imations of the generalized state variables in the element take the following type:

Uk(x,t) = > UM (N (x)

Wi = 3 (WO + S0

where k=1,...,n+land m = 1,...,n — 1; L. denotes the element length. A 2-node (L = 2) beam element
was further developed and encoded employing linear interpolation functions N’ and cubic Hermitian
polynomials Hj, Hj.

2.8. Beam damping

Substituting Egs. (10)-(12) and (15) into the governing equations of motion (14), and assuming har-
monic motion, we arrive to the final form of the discrete system describing the free-vibration response of the
beam:

—o*MI{V} +j[CH{V} + [K{¥} =0 (16)

where { ¥} are the amplitude vectors; [M], [C] and [K] are the inertia, damping and stiffness matrices of the
beam, respectively, obtained from Eq. (14) after substituting Eqgs. (10)—(12) and (15) and collecting the
common terms. The resultant expression for the element damping matrix, is described in Appendix A. In
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the case of frequency independent damping, Eq. (16) can be solved directly, to yield the complex eigen-
values of the system, from which modal frequencies and damping can be extracted. Moreover, in the case of
relatively low damping, the modal strain energy dissipation approach can be used, which assumes that the
undamped mode shapes do not differ substantially from those of the damped system. The modal loss factor
associated with the mth order mode 5, is the ratio of dissipated to stored strain modal energy of the mth
mode:

Jy" AW dx

_ 17
i Wi v

nm

The numerical solution of Eq. (16) for [C = 0] provides the undamped natural frequencies and the modal
displacement vectors of the beam. The modal loss factor of the beam is then calculated from the ratio of the
respective dissipated and maximum stored energies:

_ vy,

VLKV, (18)

nm
Eqgs. (16)—(18) are consistent with the assumed constitutive material behavior described by Eq. (1). Besides
its previous stated limitations, the modal strain energy approach provides simple damping measures of the
structure, and for this reason it was adopted in this work. Other formulations implementing time-domain
damping models (e.g. Bagley and Torvik, 1986; Zapfe and Lesieutre, 1999) can be alternatively considered,
which do not suffer from the previous limitations and may capture frequency dependence, however, such
approaches exceed the scope of present work and are left as a topic of future research.

3. Experiments

Sandwich beams were fabricated with a foam (f) core (DIAB Klegecell R grade foam) and Glass/
Polyester (GI/Pl) composite faces of [0/f/0] and [90/f/90] laminations, and their modal characteristics were
subsequently measured. The beam specimens were cut from a [0/f/0] plate, which was fabricated by hand
lay-up and their dimensions were L, = 860 mm, b = 50 mm, 2 = 35 mm, with b denoting specimen’s width.
The thicknesses of each of the faces and the core were A; = 2.5 mm and /. = 30 mm, respectively. The
elastic and damping properties of the GI/PI composite (Chrisochoidis, 2001) and foam were also measured.
The dimensions of the tested foam specimen were L, = 1140 mm, b = 50 mm, 2 = 20 mm.

3.1. Experimental procedure

The experimental setup is shown schematically in Fig. 2. The specimens were suspended by wires to
reproduce near free—free boundary conditions in order to eliminate friction damping in the supports. The
excitation was applied using either a medium electromagnetic shaker or an impact hammer, both having a
load cell attached. The beams were excited at position 1 (mid-length) or 2 (free-end) and a miniature (1g)
accelerometer was used to measure the acceleration at positions 1 or 2 in order to acquire both symmetric
and antisymmetric modes. In the case of the shaker, a swept sine force was applied to excite the specimen.
The signals of the load cell and the accelerometer were first amplified, then digitized through a high speed
data acquisition board and finally processed using FFT software to obtain the power spectra and frequency
response function (FRF) of the beam. The measured FRFs were further correlated with a known para-
metric model of complex exponential terms, each term approximating an individual mode with known
modal parameters (frequency and damping), such that the least squares error between the model and
measured FRFs was minimized. Through this correlation, the modal frequencies and damping coefficients
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Fig. 2. Experimental configuration for measuring modal frequencies and damping of the sandwich beams.

of the tested specimens were extracted. A similar procedure was used to extract the elastic and damping
coefficients of the GI/Pl composite and of the foam, shown in Table 1.

4. Results and discussion

This section presents static and modal analysis results obtained using the developed finite element and
comparisons with predictions of other single-layer and layerwise theories. The latter include a linear dis-
crete-layer theory and finite element which has been extensively correlated with exact plate solutions
(Saravanos and Heyliger, 1999). Modal damping and frequencies are predicted for thick composite beams,
composite beams with ISD110 interlaminar damping layers and composite sandwich beams with foam core.
The mechanical properties of all materials are shown in Table 1.

4.1. Static response of sandwich beam

The static response of a simply-supported sandwich beam analyzed by Di Sciuva and Icardi (2001) using
a layerwise analytical solution was modeled. The applied transverse sinusoidal pressure had the form:

p(x) = ppsin (%)

The beam had a thickness aspect ratio L/h = 4 and a core to face thickness ratio A./h; = 4. It was modeled
using 11 finite elements, and 12 discrete layers through the thickness, each representing an individual ply or
the core. Fig. 3a and b illustrate the predicted distribution of in-plane axial stress o; and interlaminar shear
stress g5 through the thickness of the beam in normalized form, respectively. Predicted stress is normalized
as

R4 07 — XX L 27

Do Po

Very good correlation is observed between the present layerwise element and the analytical solution (Di
Sciuva and Icardi, 2001) for both axial and interlaminar shear stress, indicating that the current element can
accurately predict stress in thick sandwich beam structures, where stress distribution through the thickness
can be complicated.
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Table 1

Elastic and damping properties of materials considered

6861

GI/P1 composite

3 M 110 polymer

Klegecell R foam

Elastic properties

Ey (GPa) 25.8 113.0e-3 35.0e-3
E» (GPa) 8.7 113.0e-3 35.0e-3
Es; (GPa) 8.7 113.0e-3 35.0e-3
G»; (GPa) 2.4 38.0e-3 12.3e-3
Gi3 (GPa) 3.5 38.0e-3 12.3e-3
Gy» (GPa) 3.5 38.0e-3 12.3e-3
Vi 0.34 0.49 0.40
Vi3 0.34 0.49 0.40
V23 0.47 0.49 0.40
Damping properties
(%) 0.65 1.60 2.40
Mo (%) 2.34 1.60 2.40
1y (Y0) 2.89 16.00 3.00
e (%) 2.89 16.00 3.00
Mass density p (kg/m®)
1672 1000 45
current
©  Di Sciuva-lcardi
0.6
0.4+
0.2
SECLE
0.2
0.4
-0.6 T T T T T T T
02 00 02 04 06 08 10 12
(a) Normalized o,
current
o Di Sciuva-Icardi
0.6
04 ———— "
02
S 00
0.2
-0.4 —
-0.6 T T T T T T T
<100 -80 60 40 20 0 20 40
(b) Normalized o,

Fig. 3. Predicted static response of a simply-supported sandwich beam under sinusoidal loading. (a) interlaminar shear stress; (b) axial

stress through the thickness.
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4.2. [0190/0] Beam

The static response of a [0/90/0] Glass/Polyester (GI/Pl) moderately thick (L/h = 10) composite beam
subject to 3-point bending was predicted. The beam was 150 mm long and was modeled using six elements
and three discrete layers through the thickness. Each layer represented a laminate ply and had a thickness of
5 mm. Each node had 8 structural degrees of freedom, namely the transverse deflection and its slope, four
axial displacements, one for each hidden node through thickness, and the o!, o> from the discrete layers 1
and 2, respectively. A transverse line load of 39.37 N/mm was considered at the center of the beam. The
predicted transverse deflection and the interlaminar shear strain and stress fields through the thickness at
1/4 of the length are presented in Fig. 4a—c and compared with finite element results of a linear discrete-
layer theory (Saravanos and Heyliger, 1995), which uses n = 15 discrete layers and subsequently 16
structural degrees of freedom per node. Excellent correlation between the two models is observed, which
shows that the present high-order discrete-layer damping theory can accurately capture interlaminar shear
effects and calculate strains and stresses at the ply interfaces. As expected, there is continuity in predicted
stress between adjacent layers (Fig. 4c) while both shear strain and stress vanish at the stress-free edges. The
contribution of linear and high-order terms on the calculation of total interlaminar strain is also illustrated

high-order layerwise (n=3):

high-order layerwise (n=3) total
T o linear layerwise (n=15) | ----linear terms

.= higher terms s
0.0 o linear layerwise (n=15) -
0.006 / e
-1.0x10™* 0.004 7
0.002 -
4]
—.-2.0x10 .
B £ 0.000
2 N
-3.0x10™1 -0.0021 A
u -0.004
-4.0x10™
-0.006
4
-5.0x10 T T T T T T T T T — — " " " X
0.02 000 002 004 006 008 010 012 0.14 0.16 8.0x10* 6.0x10* -4.0x10* -2.0x10* 00 2.0x10*  4.0x10”
(a) x (m) (b) S,
—— high-order layerwise
o linear layerwise
0.006 - o
0.004 - o
0.002
E 0000 o
N
-0.002 4
o
-0.004 0
-0.006 -
T T T T
-2.0x10° -1.5x10° -1.0x10° -5.0x10° 0.0
(c) 65(Pa)

Fig. 4. Predicted static response of simply-supported [0/90/0] GI/P] beam under 3-point bending. (a) Transverse deflection; (b) dis-
tribution of interlaminar shear strain through the thickness, including linear and high-order terms; (c) distribution of interlaminar
shear stress through the thickness.
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in Fig. 4b. The excellent results obtained and the minimal number of laminate degrees of freedom used by
the present laminate model vs. the linear discrete-layer theory, indicate the improved computational effi-
ciency of the former vs. the latter.

Natural frequencies and modal loss factors of the beam in unsupported conditions were predicted and
compared with results of a single-layer first-order shear damping shell theory (FSDT) (Plagianakos and
Saravanos, 2003), which has been previously validated with exact plate solutions (Saravanos and Heyliger,
1999). A 10x 1 shell finite element model was used. Fig. 5a and b demonstrate the effect of thickness aspect
ratio on the normalized natural frequency (wnom = wbL/h) and modal loss factor of the first two bending
modes, respectively. Very good correlation is observed for thin sections (high thickness aspect ratios),
whereas, for thick beams the higher order discrete-layer theory seems to provide higher predictions of
damping and lower predictions of modal frequencies than the first-order shear theory, apparently, due to
the improved representation of interlaminar shear effects.

4.3. [0,]1—-051il0,/—0, ], clamped-free beam

The effect of ply angle on modal damping of a [6,/—6,/i/0,/—0,] Glass/Polyester moderately thick
(L/h = 50) clamped-free beam was studied; i indicates interlaminar damping layer (3 M 110 viscoelastic
damping polymer) with mechanical properties shown in Table 1. The beam had a length of 225 mm and was
modeled using five discrete layers through the thickness, one layer for each of the three restraining
sublaminates and one layer for each of the two damping layers. The thickness of each damping layer was

§ 1100
@ 1000
=
@ 9001 —o— Mode 1, Current
L 8004 --a-- Mode 1, FSDT SHELL
g 700 v —— Mode 2, Current
£ 6001 --v--- Mode 2, FSDT SHELL
P4
g 500
N 400] e
= ,
g 300
O 200
P4

100

0 T T T T T T
0 20 40 60 80 100 120 140

(a) Thickness Aspect Ratio (L/h)

2.0

1.8 —o—n, Current
-~ FSDT SHELL
—=—n, Current

---v---m, FSDT SHELL

164

1.4

1.2]
104
0.8

0.6+

Modal Loss Factor (%)

0.4
0.2

w7+
0 20 40 60 80 100 120 140

(b) Thickness Aspect Ratio (L/h)

Fig. 5. Effect of thickness aspect ratio on the damped response of a free [0/90/0] GI/Pl beam. (a) Normalized bending frequencies;
(b) bending modal loss factors.
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0.25 mm. The enhancement of modal damping by adding viscoelastic layers for the three first bending
modes of the beam with respect to the ply angle is shown in Fig. 6. For the higher bending modes, where
interlaminar shear effects are more dominant, modal damping almost quintuplicates in the 0 = 0 lamina-
tions due to increased shear in the viscoelastic layers imposed by stiffer restraining composite faces. Fur-
thermore, as the mode number increases a more uniform variation of damping with respect to the fiber
orientation angle is observed, providing great advantage and flexibility towards the design of laminated
composite beams with interply damping layers exhibiting high stiffness and damping.

4.4. Free—free sandwich beams

Modal frequencies and damping of the tested [0/f/0] and [90/f/90] beams were predicted and correlated
with measured values. The longitudinal modal loss factor 7, of the foam was also measured and found to
be frequency independent for frequencies over 100 Hz (Fig. 7). The shear modal loss factor of the foam was
measured from a single torsional mode, near 150 Hz. Thus, the foam damping values shown in Table 1,
correspond to the measured constant damping values over 100 Hz. The sandwich beams were modeled
using 20 elements in the axial direction and five discrete layers through the thickness, arranged as follows:

4.0

3.54 o
-~ | oo » o
o o °
£ 251
© o
w204 without 110layers
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one 2.3 mm thick layer for each face, one 30 mm thick layer for the core and two 0.23 mm thick layers for
the region between face and core, being reach in matrix due to fabrication. In Fig. 8a and b predicted modal
damping values for the eight first bending modes of the beams are presented. Measured damping values
obtained using shaker and hammer excitation are also shown. Very good correlation is observed in the
[0/£/0] case; whereas, in the [90/f/90] case some deviation exists, especially near low frequencies, possibly due
to imperfections in the fabrication of the GI/Pl composite faces and some frequency effects. However, in
both cases the present method has captured the modal damping trend to increase at higher modes, as
interlaminar shear effects become more dominant, reaching eventually a saturation plateau. This point will
be further discussed in the following case.

4.5. Clamped-free sandwich beam

The through-thickness modal response of a similar to the previous case [0/f/0] sandwich beam with GI/P1
composite faces and foam core was studied. The beam was 500 mm long, had a thickness aspect ratio L/h of
14.3 and was modeled using 20 elements and » = 3 discrete layers through the thickness. The core to face
thickness aspect ratio A, /hs, was 6.25. Fig. 9a and b show predicted distributions of modal displacement
and interlaminar strain, respectively, through the thickness near the clamped end for the three first bending
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Fig. 8. Predicted and measured modal damping and frequencies for the eight first bending modes of free GI/P1 sandwich composite
beams, (a) [0/f/0] and (b) [90/£/90].
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Fig. 9. Predicted modal distribution through the thickness of a cantilever [0/f/0] GI/P] sandwich composite beam. (a) Modal dis-
placement; (b) modal interlaminar shear strain, near the clamped end.

modes. Results were compared to those obtained using a linear layerwise beam FE with n = 34 discrete
layers (Saravanos and Heyliger, 1995) with very good agreement. The effect of core to face thickness aspect
ratio on damping of the three first bending modes is presented in Fig. 10a. There is a baseline composite
damping, upon which damping is added as the core gets thicker due to shear effects, which is clearly shown
in Fig. 10b, where the fundamental modal interlaminar shear stress distribution through the thickness near
the clamped end is presented. Higher modes exhibit higher damping due to the presence of increased
interlaminar shear. There is also a thickness ratio threshold for each individual mode, beyond which
damping seems to be rather insensible to core thickness. This saturation may probably indicate that
interlaminar shear effects become less dominant than interlaminar normal effects (o3 action), which the
present theory does not capture.

In closing, the presented numerical predictions and their comparison with various analytical, numerical
and experimental results has successfully quantified the accuracy range of the present method. The robust
analytical capabilities of the present laminate theory were illustrated through the analysis of various
laminations, thick composite beams, thick sandwich beams with foam cores and composite beams with
compliant damping layers. In all previous cases, the present approach seemingly provided very good
displacement and stress predictions through the laminate, using a minimal number of discrete layers
and degrees of freedom.
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Fig. 10. Effect of core thickness on the damped modal response of a cantilever [0/f/0] GI/Pl sandwich composite beam. (a) Damping of
the three first bending modes; (b) interlaminar shear stress distribution of the fundamental mode near the clamped end.

5. Summary

Unified mechanics and a finite element for predicting modal damping and natural frequencies of
thick composite and sandwich beams were presented. A discrete-layer higher order theory satisfying
compatibility in interlaminar shear stress was developed and modal damping was calculated by the
modal strain energy dissipation method. Various validations illustrated the accuracy of the developed
formulation.

The strong effect of ply orientation on the modal damping of a composite beam with interply
viscoelastic damping layers was investigated and higher bending modes were found to exhibit
increased damping compared to the fundamental, which also varied more uniformly with ply angle.
The improved damping behavior of foam sandwich beams was quantified both analytically and
experimentally. The strong effect of core to face thickness aspect ratio on the modal damping of a
sandwich beam was also studied, and it was observed that as the core thickness increases, the modal
damping first will also increase until a saturation plateau is reached. Overall, the results have dem-
onstrated the damping potential of composite sandwich beam structures, as well as, the capability of
developed layerwise damping theory to accurately analyze their global and local damped dynamic
response.
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Appendix A
A.1. Equivalent ply properties

Stiffuess. The equivalent reduced ply stiffness matrix [Q}] is calculated from the full compliance matrix
[s.] by maintaining the elements corresponding to the non-zero stress components (g, gs) as follows:

_ B 0
S S I B - T A1)

Damping. The dissipated energy per unit volume per cycle within a ply is given by the following form:

. = 3STIQS. = 3ol ls o (A2)

where [n,] is the off-axis ply damping matrix. By maintaining only the elements of [s.|[n.] corresponding to
01,05 non-zero stress components, the equivalent off-axis ply damping matrix is obtained as follows:

= Qs = " | (A3)

The equivalent loss-stiffness matrix is:

Q] = [Q]n] (A4)

A.2. Discrete-layer matrices, ith layer

In-plane stiffness matrix, dimension (4 x 4)

{s, }Wcﬂ{s;}:r:z: /f”“ sty on{siy s ar (A5)

Sm

Interlaminar shear stiffness matrix (5 x 5)
i ni) €;+]iT1ihi[
sy mfs) =3 [Tsonlsi (A6)
m=1 v m
In-plane damping matrix (4 x 4)

{siy (s = [ (s o {si) 5 o (A7)
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Interlaminar shear damping matrix (5 x 5)
R o LA T oy o fin B g
(i} FI{s,} =32 [ 7 (s omm st} dc (A.8)
m=1 “tm
Generalized density matrix (5 x 5)

{“/} [m, “1 Z/mﬂ ; Pm }%dci (A9)

where 7} is the total number of plies in the ith layer and m =1,. 5 AS) )} = {UL U o, 2} and
{S,.} ={w,, U, U o ,A'} are the generalized strain vectors of the zth layer whereas {S! } {S } are the
strains in the zth layer described in Eq. (5); {u}} = {w°, U', U™ o/, 2} is the generalized displacement
vector of the ith layer, whereas {u'} is the displacement vector of the ith layer described in Eq. (2), including
both w and u.

A.3. Laminate matrices encompassing all previous submatrices through-the-thickness

In-plane stiffness, damping matrices [G], [Gq], dimensions (3n + 1) x (3n + 1); interlaminar shear stiff-
ness, damping matrices [F|, [Fy], dimensions (3n + 2) x (31 + 2) where n is the total number of layers of the
laminate, built as follows:

{Su 1l {SLI}fZ{s [G)){S},} (A.10)
{Su | {sLS}fZ{S '[F{s,} (A.11)
{81} [Gal{S1,} = I_X:j{sz } Gy (S}, } (A.12)
{SL.}T[Fd] {sLs}fZ{s Ry I{S} (A.13)

— 1 +1 1 1 n _ 1 +1 1 71 n
{Su}={U,,...., U ol ot A, A and {Se b = {w,, UL, U el oot A0 L, AT are the
generalized laminate strain vectors.

A.4. Compatibility system (built from Eq. (6))

P b =0 (A.14)
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where i =1,...,n, j=1,...,n+1; P is the compatibility matrix, having dimensions (n+ 1) x (2n+1).
Eq. (A.14), upon partitioning and rearrangement of the [P] matrix, provides Eq. (7).

A.5. Beam element damping matrix

Combining Eq. (15) with Eq. (10) and taking into account the reduced generalized laminate in-plane and
interlaminar strains, the beam element damping matrix is derived,

€= [ (1" (Gale + B Aol d (A13)

where i, j indicate the nodes of the finite element and [b] and [b,] are the shape function matrices corre-
sponding, respectively, to the reduced in-plane and interlaminar shear strains. The element stiffness and
mass matrices are obtained in a similar manner. The element matrices are then used to synthesize the
structural stiffness, damping and mass matrices, [K], [C] and [M], respectively, of Eq. (16).

A.6. Single-layer case

In the case of a single-layer through thickness, the theoretical framework developed reduces to the high-
order shear deformation theory (Reddy, 1997) in the case of a beam. The in-plane displacement through-
thickness approximation in Eq. (2) becomes,

e, 2,0) = U' ()91 (0) + U2 ) ¥a(0) + (0 3 (2 1) 2w ) 50— 1) (A16)

with o =0and 1 = % ( — W,y + UIZUZ ), as mandated from the two last compatibility equation (6) assuming

traction-free outer surfaces. In the context of Eq. (10) the reduced laminate in-plane and interlaminar shear
damping matrices [Gq] and [Fy], respectively, are 3x3 matrices and {Si, } = {w,.,U',,U?,} and
{Sii, } = {w,., U', U*} are the reduced laminate strain vectors.
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